- finite fields arithmetic
- арифметика в конечных полях (над конечными полями)
Англо-русский словарь по компьютерной безопасности. Академик.ру. 2011.
Англо-русский словарь по компьютерной безопасности. Академик.ру. 2011.
Finite field arithmetic — Arithmetic in a finite field is different from standard integer arithmetic. There are a limited number of elements in the finite field; all operations performed in the finite field result in an element within that field.While each finite field is … Wikipedia
Arithmetic combinatorics — arose out of the interplay between number theory, combinatorics, ergodic theory and harmonic analysis. It is about combinatorial estimates associated with arithmetic operations (addition, subtraction, multiplication, and division). Additive… … Wikipedia
Finite field — In abstract algebra, a finite field or Galois field (so named in honor of Évariste Galois) is a field that contains only finitely many elements. Finite fields are important in number theory, algebraic geometry, Galois theory, cryptography, and… … Wikipedia
Arithmetic of abelian varieties — In mathematics, the arithmetic of abelian varieties is the study of the number theory of an abelian variety, or family of those. It goes back to the studies of Fermat on what are now recognised as elliptic curves; and has become a very… … Wikipedia
Arithmetic function — In number theory, an arithmetic (or arithmetical) function is a real or complex valued function ƒ(n) defined on the set of natural numbers (i.e. positive integers) that expresses some arithmetical property of n. [1] An example of an arithmetic… … Wikipedia
Glossary of arithmetic and Diophantine geometry — This is a glossary of arithmetic and Diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of… … Wikipedia
Modular arithmetic — In mathematics, modular arithmetic (sometimes called clock arithmetic) is a system of arithmetic for integers, where numbers wrap around after they reach a certain value the modulus. The Swiss mathematician Leonhard Euler pioneered the modern… … Wikipedia
Trigonometry in Galois fields — In mathematics, the theory of quadratic extensions of finite fields supports analogies with trigonometry.The main motivation to deal with a finite field trigonometry is the power of the discrete transforms, which play an important role in… … Wikipedia
Field arithmetic — In mathematics, field arithmetic is a subject that studies the interrelations between arithmetic properties of a ql|field (mathematics)|field and its absolute Galois group.It is an interdisciplinary subject as it uses tools from algebraic number… … Wikipedia
List of first-order theories — In mathematical logic, a first order theory is given by a set of axioms in somelanguage. This entry lists some of the more common examples used in model theory and some of their properties. PreliminariesFor every natural mathematical structure… … Wikipedia
Outline of algebraic structures — In universal algebra, a branch of pure mathematics, an algebraic structure is a variety or quasivariety. Abstract algebra is primarily the study of algebraic structures and their properties. Some axiomatic formal systems that are neither… … Wikipedia